Scientific Method

From Nordan Symposia
(Redirected from Scientific method)
Jump to navigationJump to search

Lighterstill.jpg

S&civnchinav6.jpg

Scientific method is a body of techniques for investigating phenomena and acquiring new knowledge, as well as for correcting and integrating previous knowledge. It is based on gathering observable, empirical and measurable evidence subject to specific principles of reasoning, Isaac Newton (1687, 1713, 1726). "[4] Rules for the study of natural philosophy", Philosophiae Naturalis Principia Mathematica, Third edition. The General Scholium containing the 4 rules follows Book 3, The System of the World. Reprinted on pages 794-796 of I. Bernard Cohen and Anne Whitman's 1999 translation, University of California Press ISBN 0-520-08817-4, 974 pages. The collection of data through observation and experimentation, and the formulation and testing of hypotheses. scientific method, Merriam-Webster Dictionary.

The objects of science are identical with those of magic. Mankind is progressing from magic to science, not by meditation and reason, but rather through long experience, gradually and painfully. Man is gradually backing into the truth, beginning in error, progressing (through) error, and finally attaining the threshold of truth. Only with the arrival of the scientific method has he faced forward. But primitive man had to experiment or perish.[1]

The advantage of the scientific method is that it is unprejudiced. One can test an experiment and determine whether his/her results are true or false. The conclusions will hold regardless of the state of mind, or the bias of the investigator and/or the subject of the investigation.

Although procedures vary from one field of inquiry to another, identifiable features distinguish scientific inquiry from other methodologies of knowledge. Scientific researchers propose hypotheses as explanations of phenomena, and design experimental studies that test these hypotheses for accuracy. These steps must be repeatable in order to predict dependably any future results. Theories that encompass wider domains of inquiry may bind many hypotheses together in a coherent structure. This in turn may assist in the formation of new hypotheses, as well as in placing groups of hypotheses into a broader context of understanding.

Among other facets shared by the various fields of inquiry is the conviction that the process must be objective to reduce a biased interpretation of the results. Another basic expectation is to document, archive and share all data and methodology so it is available for careful scrutiny by other scientists, thereby allowing other researchers the opportunity to verify results by attempting to reproduce them. This practice, called "full disclosure", also allows statistical measures of the reliability of these data to be established.

Elements of scientific method

There are multiple ways of outlining the basic method shared by all of the fields of scientific inquiry. The following examples are typical classifications of the most important components of the method on which there is very wide agreement in the scientific community and among philosophers of science, each of which are subject only to marginal disagreements about a few very specific aspects.

The scientific method involves the following basic facets:

  • Observation. A constant feature of scientific inquiry, observation includes both unconditioned observations (prior to any theory) as well as the observation of the experiment and its results.
  • Description. Information derived from experiments must be reliable, i.e., replicable (repeatable), as well as valid (relevant to the inquiry).
  • Prediction. Information must be valid for observations past, present, and future of given phenomena, i.e., purported "one shot" phenomena do not give rise to the capability to predict, nor to the ability to repeat an experiment.
  • Control. Actively and fairly sampling the range of possible occurrences, whenever possible and proper, as opposed to the passive acceptance of opportunistic data, is the best way to control or counterbalance the risk of empirical bias.
  • Identification of causes. Identification of the causes of a particular phenomenon to the best achievable extent. For cause-and-effect relationship to be established, the following must be established:
  • Time-order relationship. The hypothesized causes must precede the observed effects in time.
  • Covariation of events. The hypothesized causes must correlate with observed effects. However, correlations between events or variables are not necessarily indicative of causation.
  • Elimination of plausible alternatives. This is a gradual process that requires repeated experiments by multiple researchers who must be able to replicate results in order to corroborate them.: All hypotheses and theories are in principle subject to disproof. Thus, there is a point at which there might be a consensus about a particular hypothesis or theory, yet it must in principle remain tentative. As a body of knowledge grows and a particular hypothesis or theory repeatedly brings predictable results, confidence in the hypothesis or theory increases.

Another simplified model sometimes utilized to summarize scientific method is the "operational":

The essential elements of a scientific method are operations, observations, models, and a utility function for evaluating models.

  • operation - Some action done to the system being investigated
  • Observation - What happens when the operation is done to the system
  • Model - A fact, hypothesis, theory, or the phenomenon itself at a certain moment
  • Utility Function - A measure of the usefulness of the model to explain, predict, and control, and of the cost of use of it

One of the elements of any scientific utility function is the refutability of the model. Another is its simplicity, on the Principle of Parsimony also known as Occam's Razor.

The following is a more thorough description of the method. This set of methodological elements and organization of procedures will in general tend to be more characteristic of natural sciences and experimental psychology than of disciplines commonly categorized as social sciences. Among the latter, methods of verification and testing of hypotheses may involve less stringent mathematical and statistical interpretations of these elements within the respective disciplines. Nonetheless the cycle of hypothesis, verification and formulation of new hypotheses will tend to resemble the basic cycle described below.

The essential elements of a scientific method are iterations, recursions, interleavings, and orderings of the following

Galileo, Two New Sciences

William Glen, Mass-Extinction Debates: How science works in a crisis

Andrew J. Galambos, Sic Itur ad Astra (who learned it from Felix Ehrenhaft)

William Stanley Jevons, The principles of science: a treatise on logic and scientific method

Ørsted, Selected Scientific Works of Hans Christian Ørsted

Max Born, Natural Philosophy of Cause and Chance:

Imre Lakatos and Thomas Kuhn had done extensive work on the "theory laden" character of observation. Kuhn (1961) maintained that the scientist generally has a theory in mind before designing and undertaking experiments so as to make empirical observations, and that the "route from theory to measurement can almost never be traveled backward". This perspective implies that the way in which theory is tested is dictated by the nature of the theory itself, which led Kuhn (1961, p. 166) to argue that "once it has been adopted by a profession ... no theory is recognized to be testable by any quantitative tests that it has not already passed".

Each element of the scientific method is subject to peer review for possible mistakes. These activities do not describe all that scientists do (see below) but apply mostly to experimental sciences (e.g., physics, chemistry). The elements above are often taught in the educational system. In the inquiry-based education paradigm, the stage of "characterization, observation, definition, …" is more briefly summed up under the rubric of a Question.

The scientific method is not a recipe: it requires intelligence, imagination, and creativity "To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science." p.92, Albert Einstein and Leopold Infeld (1938), The Evolution of Physics: from early concepts to relativity and quanta ISBN0-671-20156-5. Further, it is an ongoing cycle, constantly developing more useful, accurate and comprehensive models and methods. For example, when Einstein developed the Special and General Theories of Relativity, he did not in any way refute or discount Newton's Principia. On the contrary, if one reduces out the astronomically large, the vanishingly small, and the extremely fast from Einstein's theories — all phenomena that Newton could not have observed — one is left with Newton's equations. Einstein's theories are expansions and refinements of Newton's theories, and the observations that increase our confidence in them also increase our confidence in Newton's approximations to them.

The Keystones of Science project, sponsored by the journal Science, has selected a number of scientific articles from that journal and annotated them, illustrating how different parts of each article embody the scientific method. Here is an annotated example of the scientific method example titled Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss?.

A linearized, pragmatic scheme of the four points above is sometimes offered as a guideline for proceeding:Template:Fact

  1. Define the question
  2. Gather information and resources
  3. Form hypothesis
  4. Perform experiment and collect data
  5. Analyze data
  6. Interpret data and draw conclusions that serve as a starting point for new hypotheses
  7. Publish results

The iterative cycle inherent in this step-by-step methodology goes from point 3 to 6 back to 3 again.


Characterizations

The scientific method depends upon increasingly more sophisticated characterizations of subjects of the investigation. (The subjects can also be called unsolved problems or the unknowns). For example, Benjamin Franklin correctly characterized St. Elmo's fire as electrical in nature, but it has taken a long series of experiments and theory to establish this. While seeking the pertinent properties of the subjects, this careful thought may also entail some definitions and observations; the observations often demand careful measurements and/or counting.

The systematic, careful collection of measurements or counts of relevant quantities is often the critical difference between pseudo-sciences, such as alchemy, and a science, such as chemistry or biology. Scientific measurements taken are usually tabulated, graphed, or mapped, and statistical manipulations, such as correlation and regression, performed on them. The measurements might be made in a controlled setting, such as a laboratory, or made on more or less inaccessible or unmanipulatable objects such as stars or human populations. The measurements often require specialized scientific instruments such as thermometers, spectroscopes, or voltmeters, and the progress of a scientific field is usually intimately tied to their invention and development.

Uncertainty

Measurements in scientific work are also usually accompanied by estimates of their uncertainty. The uncertainty is often estimated by making repeated measurements of the desired quantity. Uncertainties may also be calculated by consideration of the uncertainties of the individual underlying quantities that are used. Counts of things, such as the number of people in a nation at a particular time, may also have an uncertainty due to limitations of the method used. Counts may only represent a sample of desired quantities, with an uncertainty that depends upon the sampling method used and the number of samples taken.

Definition

Measurements demand the use of operational definitions of relevant quantities. That is, a scientific quantity is described or defined by how it is measured, as opposed to some more vague, inexact or "idealized" definition. For example, electrical current, measured in amperes, may be operationally defined in terms of the mass of silver deposited in a certain time on an electrode in an electrochemical device that is described in some detail. The operational definition of a thing often relies on comparisons with standards: the operational definition of "mass" ultimately relies on the use of an artifact, such as a certain kilogram of platinum-iridium kept in a laboratory in France.

The scientific definition of a term sometimes differs substantially from their natural language usage. For example, mass and weight overlap in meaning in common discourse, but have distinct meanings in mechanics. Scientific quantities are often characterized by their units of measure which can later be described in terms of conventional physical units when communicating the work.

New theories sometimes arise upon realizing that certain terms had not previously been sufficiently clearly defined. For example, Albert Einstein's first paper on relativity begins by defining simultaneity and the means for determining length. These ideas were skipped over by Isaac Newton with, "I do not define time, space, place and motion, as being well known to all." Einstein's paper then demonstrates that they (viz., absolute time and length independent of motion) were approximations. Francis Crick cautions us that when characterizing a subject, however, it can be premature to define something when it remains ill-understood. Crick, Francis (1994), The Astonishing Hypothesis ISBN 0-684-19431-7 p.20. In Crick's study of consciousness, he actually found it easier to study awareness in the visual system, rather than to study Free Will, for example. His cautionary example was the gene; the gene was much more poorly understood before Watson and Crick's pioneering discovery of the structure of DNA; it would have been counterproductive to spend much time on the definition of the gene, before them.

The history of the discovery of the structure of DNA is a classic example of the elements of scientific method: in 1950 it was known that genetic inheritance had a mathematical description, starting with the studies of Gregor Mendel. But the mechanism of the gene was unclear. Researchers in Bragg's laboratory at Cambridge University made X-ray diffraction pictures of various molecules, starting with crystals of salt, and proceeding to more complicated substances. Using clues which were painstakingly assembled over the course of decades, beginning with its chemical composition, it was determined that it should be possible to characterize the physical structure of DNA, and the X-ray images would be the vehicle.

Precession of Mercury

The characterization element can require extended and extensive study, even centuries. It took thousands of years of measurements, from the Chaldean, Indian, Persian, Greek, Arabic and European astronomers, to record the motion of planet Earth. Newton was able to condense these measurements into consequences of his laws of motion. But the perihelion of the planet Mercury's orbit exhibits a precession which is not fully explained by Newton's laws of motion. The observed difference for Mercury's precession, between Newtonian theory and relativistic theory (approximately 43 arc-seconds per century), was one of the things that occurred to Einstein as a possible early test of his theory of General Relativity.

Hypothesis development

A hypothesis is a suggested explanation of a phenomenon, or alternately a reasoned proposal suggesting a possible correlation between or among a set of phenomena.

Normally hypotheses have the form of a mathematical model. Sometimes, but not always, they can also be formulated as existential statements, stating that some particular instance of the phenomenon being studied has some characteristic and causal explanations, which have the general form of universal statements, stating that every instance of the phenomenon has a particular characteristic.

Scientists are free to use whatever resources they have — their own creativity, ideas from other fields, induction, Bayesian inference, and so on — to imagine possible explanations for a phenomenon under study. Charles Sanders Peirce, borrowing a page from Aristotle (Prior Analytics, 2.25) described the incipient stages of inquiry, instigated by the "irritation of doubt" to venture a plausible guess, as abductive reasoning. The history of science is filled with stories of scientists claiming a "flash of inspiration", or a hunch, which then motivated them to look for evidence to support or refute their idea. Michael Polanyi made such creativity the centrepiece of his discussion of methodology.

Karl Popper, following others, developing and inverting the views of the Austrian logical positivists, has argued that a hypothesis must be falsifiable, and that a proposition or theory cannot be called scientific if it does not admit the possibility of being shown false. It must at least in principle be possible to make an observation that would show the proposition to be false, even if that observation had not yet been made.

William Glen observes that the success of a hypothesis, or its service to science, lies not simply in its perceived "truth", or power to displace, subsume or reduce a predecessor idea, but perhaps more in its ability to stimulate the research that will illuminate … bald suppositions and areas of vagueness. Glen,William (ed.), The Mass-Extinction Debates: How Science Works in a Crisis, Stanford University Press, Stanford, CA, 1994. ISBN 0-8047-2285-4. pp. 37-38.


In general scientists tend to look for theories that are "elegant" or "beautiful". In contrast to the usual English use of these terms, they here refer to a theory in accordance with the known facts, which is nevertheless relatively simple and easy to handle. Occam's Razor serves as a rule of thumb for making these determinations.

Linus Pauling proposed that DNA was a triple helix. Francis Crick and James Watson learned of Pauling's hypothesis, understood from existing data that Pauling was wrong and realized that Pauling would soon realize his mistake. So the race was on to figure out the correct structure. Except that Pauling did not realize at the time that he was in a race!

Predictions from the hypothesis

Any useful hypothesis will enable predictions, by reasoning including deductive reasoning. It might predict the outcome of an experiment in a laboratory setting or the observation of a phenomenon in nature. The prediction can also be statistical and only talk about probabilities.

It is essential that the outcome be currently unknown. Only in this case does the eventuation increase the probability that the hypothesis be true. If the outcome is already known, it's called a consequence and should have already been considered while formulating the hypothesis.

If the predictions are not accessible by observation or experience, the hypothesis is not yet useful for the method, and must wait for others who might come afterward, and perhaps rekindle its line of reasoning. For example, a new technology or theory might make the necessary experiments feasible.

When Watson and Crick hypothesized that DNA was a double helix, Francis Crick predicted that an X-ray diffraction image of DNA would show an X-shape. Also in their first paper they predicted that the double helix structure that they discovered would prove important in biology, writing "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material".

General relativity

Einstein's theory of General Relativity makes several specific predictions about the observable structure of space-time, such as a prediction that light bends in a gravitational field and that the amount of bending depends in a precise way on the strength of that gravitational field. Arthur Eddington's observations made during a 1919 solar eclipse supported General Relativity rather than Newtonian gravitation.

Experiments

Once predictions are made, they can be tested by experiments. If test results contradict predictions, then the hypotheses are called into question and explanations may be sought. Sometimes experiments are conducted incorrectly and are at fault. If the results confirm the predictions, then the hypotheses are considered likely to be correct but might still be wrong and are subject to further testing.

Depending on the predictions, the experiments can have different shapes. It could be a classical experiment in a laboratory setting, a double-blind study or an archaeological excavation. Even taking a plane from New York to Paris is an experiment which tests the aerodynamical hypotheses used for constructing the plane.

Scientists assume an attitude of openness and accountability on the part of those conducting an experiment. Detailed record keeping is essential, to aid in recording and reporting on the experimental results, and providing evidence of the effectiveness and integrity of the procedure. They will also assist in reproducing the experimental results. This tradition can be seen in the work of Hipparchus (190 BCE - 120 BCE), when determining a value for the precession of the Earth over 2100 years ago, and 1000 years before Al-Batani (853 CE – 929 CE).

Before proposing their model Watson and Crick had previously seen x-ray diffraction images by Rosalind Franklin, Maurice Wilkins, and Raymond Gosling. However, they later reported that Franklin initially rebuffed their suggestion that DNA might be a double helix. Franklin had immediately spotted flaws in the initial hypotheses about the structure of DNA by Watson and Crick. The X-shape in X-ray images helped confirm the helical structure of DNA "The instant I saw the picture my mouth fell open and my pulse began to race." -- James D. Watson (1968), The Double Helix, page 167. New York: Atheneum, Library of Congress card number 68-16217. Page 168 shows the X-shaped pattern of the B-form of DNA, clearly indicating crucial details of its helical structure to Watson and Crick.

Evaluation and iteration

Testing and improvement

The scientific process is iterative. At any stage it is possible that some consideration will lead the scientist to repeat an earlier part of the process. Failure to develop an interesting hypothesis may lead a scientist to re-define the subject they are considering. Failure of a hypothesis to produce interesting and testable predictions may lead to reconsideration of the hypothesis or of the definition of the subject. Failure of the experiment to produce interesting results may lead the scientist to reconsidering the experimental method, the hypothesis or the definition of the subject.

Other scientists may start their own research and enter the process at any stage. They might adopt the characterization and formulate their own hypothesis, or they might adopt the hypothesis and deduce their own predictions. Often the experiment is not done by the person who made the prediction and the characterization is based on experiments done by someone else. Published results of experiments can also serve as a hypothesis predicting their own reproducibility.

After considerable fruitless experimentation, being discouraged by their superior from continuing, and numerous false starts, Watson and Crick were able to infer the essential structure of DNA by concrete modeling of the physical shapes of the nucleotides which comprise it. They were guided by the bond lengths which had been deduced by Linus Pauling and the X-ray diffraction images of Rosalind Franklin.

Confirmation

Science is a social enterprise, and scientific work tends to be accepted by the community when it has been confirmed. Crucially, experimental and theoretical results must be reproduced by others within the science community. Researchers have given their lives for this vision; Georg Wilhelm Richmann was killed by lightning (1753) when attempting to replicate the 1752 kite-flying experiment of Benjamin Franklin.Cite error: Closing </ref> missing for <ref> tag[1] The fundamental tenets of the modern scientific method crystallized no later than the rise of the modern physical sciences, in the 17th and 18th centuries. In his work Novum Organum (1620) — a reference to Aristotle's OrganonFrancis Bacon outlined a new system of logic to improve upon the old philosophical process of syllogism. Then, in 1637, René Descartes established the framework for a scientific method's guiding principles in his treatise, Discourse on Method. These writings are considered critical in the historical development of the scientific method.

In the late 19th century, Charles Sanders Peirce proposed a schema that would turn out to have considerable influence in the development of current scientific method generally. Peirce accelerated the progress on several fronts. Firstly, speaking in broader context in "How to Make Our Ideas Clear" (1878) [2], Peirce outlined an objectively verifiable method to test the truth of putative knowledge on a way that goes beyond mere foundational alternatives, focusing upon both deduction and induction. He thus placed induction and deduction in a complementary rather than competitive context (the latter of which had been the primary trend at least since David Hume, who wrote in the mid-to-late 18th century). Secondly, and of more direct importance to modern method, Peirce put forth the basic schema for hypothesis/testing that continues to prevail today. Extracting the theory of inquiry from its raw materials in classical logic, he refined it in parallel with the early development of symbolic logic to address the then-current problems in scientific reasoning. Peirce examined and articulated the three fundamental modes of reasoning that, as discussed above in this article, play a role in inquiry today, the processes that are currently known as abductive, deductive, and inductive inference. Thirdly, he played a major role in the progress of symbolic logic itself — indeed this was his primary specialty.

Karl Popper (1902–1994), beginning in the 1930s and with increased vigor after World War II, argued that a hypothesis must be falsifiable and, following Peirce and others, that science would best progress using deductive reasoning as its primary emphasis, known as critical rationalism. His astute formulations of logical procedure helped to rein in excessive use of inductive speculation upon inductive speculation, and also strengthened the conceptual foundation for today's peer review procedures.

Relationship with mathematics

Science is the process of gathering, comparing, and evaluating proposed models against observables. A model can be a simulation, mathematical or chemical formula, or set of proposed steps. Science is like mathematics in that researchers in both disciplines can clearly distinguish what is known from what is unknown at each stage of discovery. Models, in both science and mathematics, need to be internally consistent and also ought to be falsifiable (capable of disproof). In mathematics, a statement need not yet be proven; at such a stage, that statement would be called a conjecture. But when a statement has attained mathematical proof, that statement gains a kind of immortality which is highly prized by mathematicians, and for which some mathematicians devote their lives<ref> "When we are working intensively, we feel keenly the progress of our work; we are elated when our progress is rapid, we are depressed when it is slow." page 131, in the section on 'Modern heuristic'-- the mathematician George Polya (1957), How to solve it, Second edition.

Mathematical work and scientific work can inspire each other. For example, the concept of time arose in science, and timelessness was a hallmark of a mathematical topic. But today, the Poincaré conjecture is in the process of being proven, using time as a mathematical concept, in which objects can flow (see Ricci flow.

Further reading

  • Bacon, Francis Novum Organum (The New Organon), 1620. Bacon's work described many of the accepted principles, underscoring the importance of theory, empirical results, data gathering, experiment, and independent corroboration.
  • Bauer, Henry H., Scientific Literacy and the Myth of the Scientific Method, University of Illinois Press, Champaign, IL, 1992
  • Bernstein, Richard J., Beyond Objectivism and Relativism: Science, Hermeneutics, and Praxis, University of Pennsylvania Press, Philadelphia, PA, 1983.
  • Bozinovski, Stevo, Consequence Driven Systems: Teaching, Learning, and Self-Learning Agents, GOCMAR Publishers, Bitola, Macedonia, 1991.
  • Burks, Arthur W., Chance, Cause, Reason — An Inquiry into the Nature of Scientific Evidence, University of Chicago Press, Chicago, IL, 1977.
  • Chomsky, Noam, Reflections on Language, Pantheon Books, New York, NY, 1975.
  • Earman, John (ed.), Inference, Explanation, and Other Frustrations: Essays in the Philosophy of Science, University of California Press, Berkeley & Los Angeles, CA, 1992.
  • Feyerabend, Paul K., Against Method, Outline of an Anarchistic Theory of Knowledge, 1st published, 1975. Reprinted, Verso, London, UK, 1978.
  • Gadamer, Hans-Georg, Reason in the Age of Science, Frederick G. Lawrence (trans.), MIT Press, Cambridge, MA, 1981.
  • Giere, Ronald N. (ed.), Cognitive Models of Science, vol. 15 in 'Minnesota Studies in the Philosophy of Science', University of Minnesota Press, Minneapolis, MN, 1992.
  • Hacking, Ian, Representing and Intervening, Introductory Topics in the Philosophy of Natural Science, Cambridge University Press, Cambridge, UK, 1983.
  • Heisenberg, Werner, Physics and Beyond, Encounters and Conversations, A.J. Pomerans (trans.), Harper and Row, New York, NY 1971, pp. 63–64.
  • Holton, Gerald, Thematic Origins of Scientific Thought, Kepler to Einstein, 1st edition 1973, revised edition, Harvard University Press, Cambridge, MA, 1988.
  • Jevons, William Stanley, The Principles of Science: A Treatise on Logic and Scientific Method, 1874, 1877, 1879. Reprinted with a foreword by Ernst Nagel, Dover Publications, New York, NY, 1958.
  • Kuhn, Thomas S., "The Function of Measurement in Modern Physical Science", ISIS 52(2), 161–193, 1961.
  • Kuhn, Thomas S., The Structure of Scientific Revolutions, University of Chicago Press, Chicago, IL, 1962. 2nd edition 1970. 3rd edition 1996.
  • Kuhn, Thomas S., The Essential Tension, Selected Studies in Scientific Tradition and Change, University of Chicago Press, Chicago, IL, 1977.
  • Latour, Bruno, Science in Action, How to Follow Scientists and Engineers through Society, Harvard University Press, Cambridge, MA, 1987.
  • Losee, John, A Historical Introduction to the Philosophy of Science, Oxford University Press, Oxford, UK, 1972. 2nd edition, 1980.
  • Maxwell, Nicholas, The Comprehensibility of the Universe: A New Conception of Science, Oxford University Press, Oxford, 1998. Paperback 2003.
  • Misak, Cheryl J., Truth and the End of Inquiry, A Peircean Account of Truth, Oxford University Press, Oxford, UK, 1991.
  • Newell, Allen, Unified Theories of Cognition, Harvard University Press, Cambridge, MA, 1990.
  • Peirce, C.S., Essays in the Philosophy of Science, Vincent Tomas (ed.), Bobbs–Merrill, New York, NY, 1957.
  • Peirce, C.S., "Lectures on Pragmatism", Cambridge, MA, March 26 – May 17, 1903. Reprinted in part, Collected Papers, CP 5.14–212. Reprinted with Introduction and Commentary, Patricia Ann Turisi (ed.), Pragmatism as a Principle and a Method of Right Thinking: The 1903 Harvard "Lectures on Pragmatism", State University of New York Press, Albany, NY, 1997. Reprinted, pp. 133–241, Peirce Edition Project (eds.), The Essential Peirce, Selected Philosophical Writings, Volume 2 (1893–1913), Indiana University Press, Bloomington, IN, 1998.
  • Piattelli-Palmarini, Massimo (ed.), Language and Learning, The Debate between Jean Piaget and Noam Chomsky, Harvard University Press, Cambridge, MA, 1980.
  • Popper, Karl R., Unended Quest, An Intellectual Autobiography, Open Court, La Salle, IL, 1982.
  • Putnam, Hilary, Renewing Philosophy, Harvard University Press, Cambridge, MA, 1992.
  • Rorty, Richard, Philosophy and the Mirror of Nature, Princeton University Press, Princeton, NJ, 1979.
  • Salmon, Wesley C., Four Decades of Scientific Explanation, University of Minnesota Press, Minneapolis, MN, 1990.
  • Shimony, Abner, Search for a Naturalistic World View: Vol. 1, Scientific Method and Epistemology, Vol. 2, Natural Science and Metaphysics, Cambridge University Press, Cambridge, UK, 1993.
  • Thagard, Paul, Conceptual Revolutions, Princeton University Press, Princeton, NJ, 1992.
  • Ziman, John (2000). Real Science: what it is, and what it means. Cambridge, Uk: Cambridge University Press.


See also

Synopsis of related topics

Logic, mathematics, methodology


Problems and issues


History, philosophy, sociology

Template:Col-break

Template:Col-break


External links

Science treatments

Alternative scientific treatments