Sextant

From Nordan Symposia
Jump to navigationJump to search

Lighterstill.jpg

Sextplath1.jpg

Origin

New Latin sextant-, sextans sixth part of a circle, from Latin, sixth part, from sextus sixth

The scale of a sextant has a length of ⅙ of a turn (60°); hence the sextant's name (sextāns, -antis is the Latin word for "one sixth"). An octant is a similar device with a shorter scale (⅛ turn, or 45°), where as a quintant (⅕ turn, or 72°) and a quadrant (¼ turn, or 90°) have longer scales.

Sir Isaac Newton (1643–1727) invented the principle of the doubly reflecting navigation instrument (a reflecting quadrant—see Octant (instrument)), but never published it. Two men independently developed the octant around 1730: John Hadley (1682–1744), an English mathematician, and Thomas Godfrey (1704–1749), a glazier in Philadelphia. John Bird made the first sextant in 1757. The octant and later the sextant, replaced the Davis quadrant as the main instrument for navigation.

Definition

  • 1: an instrument for measuring angular distances used especially in navigation to observe altitudes of celestial bodies (as in ascertaining latitude and longitude)

Description

A sextant is an instrument used to measure the angle between any two visible objects. Its primary use is to determine the angle between a celestial object and the horizon which is known as the object's altitude. Using this measurement is known as sighting the object, shooting the object, or taking a sight and it is an essential part of celestial navigation. The angle, and the time when it was measured, can be used to calculate a position line on a nautical or aeronautical chart. Common uses of the sextant include sighting the sun at solar noon and sighting Polaris at night (in the Northern Hemisphere), to find one's latitude. Sighting the height of a landmark can give a measure of distance off and, held horizontally, a sextant can measure angles between objects for a position on a chart. A sextant can also be used to measure the lunar distance between the moon and another celestial object (e.g., star, planet) in order to determine Greenwich time which is important because it can then be used to determine the longitude.[1]