Difference between revisions of "Planet"

From Nordan Symposia
Jump to navigationJump to search
(New page: A '''planet''', as most recently defined by the International Astronomical Union (IAU), is a celestial body orbiting a star or [[Stellar evolution...)
 
m (Text replacement - "http://" to "https://")
 
(11 intermediate revisions by one other user not shown)
Line 1: Line 1:
A '''planet''', as [[2006 definition of planet|most recently defined]] by the [[International Astronomical Union]] (IAU), is a celestial body [[orbit]]ing a [[star]] or [[Stellar evolution#Stellar remnants|stellar remnant]] that is massive enough to be rounded by its own [[gravity]], not massive enough to cause [[thermonuclear fusion]] in its core, and has [[cleared the neighbourhood|cleared its neighbouring region]] of [[planetesimals]].<ref name=IAU>{{ cite web | title = IAU 2006 General Assembly: Result of the IAU Resolution votes | url = http://www.iau2006.org/mirror/www.iau.org/iau0603/index.html | year = 2006 | accessdate = 2007-04-30 }}</ref><ref name=WSGESP>{{ cite web |year = 2001 | title = Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union | work = [[IAU]]| url = http://www.dtm.ciw.edu/boss/definition.html | accessdate = 2006-05-25 }}</ref>
+
[[Image:lighterstill.jpg]][[Image:Planetary_Eclipse.jpg|right|frame]]
 +
 
 +
A '''planet''', as 2006 definition of planet|most recently defined by the International Astronomical Union (IAU), is a celestial body orbiting a [[star]] or stellar remnant that is massive enough to be rounded by its own [[gravity]], not massive enough to cause thermonuclear fusion in its core, and has cleared its neighbouring region of [[planetesimals]].  
 +
 
 +
*IAU 2006 General Assembly: Result of the IAU Resolution votes [https://www.iau2006.org/mirror/www.iau.org/iau0603/index.html] .
 +
*Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union, [https://www.dtm.ciw.edu/boss/definition.html]
  
 
The term ''planet'' is an ancient one, with ties to history, science, myth and religion. The planets were originally seen as a divine presence; as emissaries of the gods. As scientific knowledge improved, the human perception of the planets changed over time, incorporating [[#Former planets|a number of disperate objects]]. Even now there is no unconstested definition of what a planet is. In 2006, the IAU officially adopted a resolution [[2006 definition of planet|defining planets]] within the [[Solar System]]. This definition has been both praised and criticised, and remains disputed by some scientists.  
 
The term ''planet'' is an ancient one, with ties to history, science, myth and religion. The planets were originally seen as a divine presence; as emissaries of the gods. As scientific knowledge improved, the human perception of the planets changed over time, incorporating [[#Former planets|a number of disperate objects]]. Even now there is no unconstested definition of what a planet is. In 2006, the IAU officially adopted a resolution [[2006 definition of planet|defining planets]] within the [[Solar System]]. This definition has been both praised and criticised, and remains disputed by some scientists.  
Line 5: Line 10:
 
Since the dawn of the [[space age]], probes have been sent to every planet in the [[Solar System]], and the discoveries they have made have shifted [[planetary science]] from the realm of astronomy to the realms of [[geography]] and [[geology]]. The planets have been found to share many characteristics, such as volcanism, hurricanes, tectonics and even hydrology, previously only known on Earth. Since 1992, and the discovery of hundreds of [[extrasolar planets]], scientists are beginning to observe similar features across the galaxy.  
 
Since the dawn of the [[space age]], probes have been sent to every planet in the [[Solar System]], and the discoveries they have made have shifted [[planetary science]] from the realm of astronomy to the realms of [[geography]] and [[geology]]. The planets have been found to share many characteristics, such as volcanism, hurricanes, tectonics and even hydrology, previously only known on Earth. Since 1992, and the discovery of hundreds of [[extrasolar planets]], scientists are beginning to observe similar features across the galaxy.  
  
Under IAU definitions, there are eight planets in the Solar System ([[Mercury (planet)|Mercury]], [[Venus]], [[Earth]], [[Mars]], [[Jupiter]], [[Saturn]], [[Uranus]], and [[Neptune]]) and also at least three [[dwarf planets]] ([[Ceres (dwarf planet)|Ceres]], [[Pluto]], and [[Eris (dwarf planet)|Eris]]). Many of these planets are orbited by one or more [[natural satellite|moons]], which can be larger than small planets. There have also been more than two hundred planets discovered [[extrasolar planet|orbiting other stars]].<ref name="Encyclopaedia">{{cite web |title=Interactive Extra-solar Planets Catalog |work=The Extrasolar Planets Encyclopaedia |url=http://exoplanet.eu/catalog.php |last=Schneider |first=Jean |date=[[October 30]], [[2006]] |accessdate=2006-10-31}}</ref> Planets are generally divided into two main types: large, low-density [[gas giant]]s and smaller, rocky [[terrestrial planet|terrestrials]]. Dwarf planets, a separate category, can either be terrestrials or frozen [[ice dwarf]]s.
+
Under IAU definitions, there are eight planets in the Solar System ([[Mercury (planet)|Mercury]], [[Venus]], [[Earth]], [[Mars]], [[Jupiter]], [[Saturn]], [[Uranus]], and [[Neptune]]) and also at least three [[dwarf planets]] ([[Ceres (dwarf planet)|Ceres]], [[Pluto]], and [[Eris (dwarf planet)|Eris]]). Many of these planets are orbited by one or more [[natural satellite|moons]], which can be larger than small planets. There have also been more than two hundred planets discovered [[extrasolar planet|orbiting other stars]]."Encyclopaedia"> Interactive Extra-solar Planets Catalog, The Extrasolar Planets Encyclopaedia, https://exoplanet.eu/catalog.php Planets are generally d. ivided into two main types: large, low-density [[gas giant]]s and smaller, rocky [[terrestrial planet|terrestrials]]. Dwarf planets, a separate category, can either be terrestrials or frozen [[ice dwarf]]s.
  
 
==Etymology==
 
==Etymology==
[[Image:Olympians.jpg|thumb|left|220 px|The gods of [[Mount Olympus (Mountain)|Olympus]], after whom the Solar System's planets are named]]
 
  
In ancient times, astronomers noted how certain lights moved across the sky in relation to the other stars.  These objects were believed to orbit the [[Earth]], which was considered to be stationary. The lights were first called "πλανήται" (''planētai''),<ref>See [[romanization of Greek]] for the transcription scheme meaning "wanderers", by the ancient Greeks, and it is from this that the word "planet" was derived. http://www.m-w.com/dictionary/planet|title=Definition of planet|publisher=Merriam-Webster OnLine|accessdate=2007-07-23}} http://www.wordsources.info/words-mod-planets.html|title=Words For Our Modern Age: Especially words derived from Latin and Greek sources|publisher=Wordsources.
+
In ancient times, astronomers noted how certain lights moved across the sky in relation to the other stars.  These objects were believed to orbit the [[Earth]], which was considered to be stationary. The lights were first called "πλανήται" (''planētai''), See [[romanization of Greek]] for the transcription scheme meaning "wanderers", by the ancient Greeks, and it is from this that the word "planet" was derived. [https://www.m-w.com/dictionary/planet|title. Definition of planet Merriam-Webster OnLine],  [https://www.wordsources.info/words-mod-planets.html Words For Our Modern Age: Especially words derived from Latin and Greek].
  
 
The Greeks gave the planets names: the farthest was called ''Phainon'', the shiner, while below it was ''Phaethon'', the bright one. The red planet was known as ''Pyroeis'', "fiery", while the brightest was known as ''Phosphoros'', the light bringer, and the fleeting final planet was called ''Stilbon'', the gleamer. However, the Greeks also made each planet sacred to one of their pantheon of gods, the [[Twelve Olympians|Olympians]]: Phainon was sacred to [[Kronos]], the [[Titan (mythology)|Titan]] who fathered the Olympians, while Phaethon was sacred to [[Zeus]], his son who deposed him as king. [[Ares]], son of Zeus and god of war, was given dominion over Pyroeis, while [[Aphrodite]], goddess of love, ruled over bright Phosphoros, and [[Hermes]] ruled over Stilbon. The History and Practice of Ancient, James Evans, Oxford University Press  
 
The Greeks gave the planets names: the farthest was called ''Phainon'', the shiner, while below it was ''Phaethon'', the bright one. The red planet was known as ''Pyroeis'', "fiery", while the brightest was known as ''Phosphoros'', the light bringer, and the fleeting final planet was called ''Stilbon'', the gleamer. However, the Greeks also made each planet sacred to one of their pantheon of gods, the [[Twelve Olympians|Olympians]]: Phainon was sacred to [[Kronos]], the [[Titan (mythology)|Titan]] who fathered the Olympians, while Phaethon was sacred to [[Zeus]], his son who deposed him as king. [[Ares]], son of Zeus and god of war, was given dominion over Pyroeis, while [[Aphrodite]], goddess of love, ruled over bright Phosphoros, and [[Hermes]] ruled over Stilbon. The History and Practice of Ancient, James Evans, Oxford University Press  
  
The Greek practice of grafting of their gods' names onto the planets was  almost certainly borrowed from the [[Babylonians]], a contemporary civilisation in what is now [[Iraq]], from whom they had begun to absorb astronomical learning, including constellations and the zodiac, by 600 BCE.<ref>{{cite web|title=A Chronological History of Babylonian Astronomy|author=Gary D. Thompson|url=http://members.optusnet.com.au/~gtosiris/page9k.html|year=2007|accessdate=2007-04-30}}</ref> The Babylonians had in turn inherited the practice from their predecessors, the [[Sumerians]], who flourished around 2500 years before. The Babylonians named Phosphoros after their goddess of love, Ishtar, Pyroeis after their god of war, Nergal, and Phaethon after their chief god, Marduk,  nergal> The Days of http://www.friesian.com/week.htm The Friesian School,  There are too many concordances between Greek and Babylonian naming conventions for them to have arisen separately.<ref name=astronomy /> There does, however, appear to have been some confusion in translation. For instance, the Babylonian [[Nergal]] was a god of war, and the Greeks, seeing this aspect of Nergal's persona, identified him with [[Ares]], their god of war. However, Nergal, unlike Ares, was also a god of the dead and a god of pestilence.<ref name= nergal.
+
The Greek practice of grafting of their gods' names onto the planets was  almost certainly borrowed from the [[Babylonians]], a contemporary civilisation in what is now [[Iraq]], from whom they had begun to absorb astronomical learning, including constellations and the zodiac, by 600 BCE. A Chronological History of Babylonian Astronomy, Gary D. Thompson, https://members.optusnet.com.au/~gtosiris/page9k.html] The Babylonians had in turn inherited the practice from their predecessors, the [[Sumerians]], who flourished around 2500 years before. The Babylonians named Phosphoros after their goddess of love, Ishtar, Pyroeis after their god of war, Nergal, and Phaethon after their chief god, Marduk,  nergal> The Days of https://www.friesian.com/week.htm The Friesian School,  There are too many concordances between Greek and Babylonian naming conventions for them to have arisen separately. There does, however, appear to have been some confusion in translation. For instance, the Babylonian [[Nergal]] was a god of war, and the Greeks, seeing this aspect of Nergal's persona, identified him with [[Ares]], their god of war. However, Nergal, unlike Ares, was also a god of the dead and a god of pestilence.<ref name= nergal.
  
 
Today, most people in the western world know the planets by names derived from the [[Twelve Olympians|Olympian pantheon]] of gods; however, because of the influence of the [[Roman Empire]] and, later, the [[Catholic Church]], they are known by their Roman (or Latin) names, rather than the Greek. The Romans, who, like the Greeks, were [[Indo-European mythology|Indo-Europeans]], shared with them a [[Roman mythology|common pantheon]] under different names but lacked the rich narrative traditions that Greek poetic culture had given [[Greek mythology|their gods]]. During the later period of the [[Roman Republic]], Roman writers borrowed much of the Greek narratives and applied them to their own pantheon, to the point where they became virtually indistinguishable. When the Romans studied Greek astronomy, they gave the planets their own gods' names.
 
Today, most people in the western world know the planets by names derived from the [[Twelve Olympians|Olympian pantheon]] of gods; however, because of the influence of the [[Roman Empire]] and, later, the [[Catholic Church]], they are known by their Roman (or Latin) names, rather than the Greek. The Romans, who, like the Greeks, were [[Indo-European mythology|Indo-Europeans]], shared with them a [[Roman mythology|common pantheon]] under different names but lacked the rich narrative traditions that Greek poetic culture had given [[Greek mythology|their gods]]. During the later period of the [[Roman Republic]], Roman writers borrowed much of the Greek narratives and applied them to their own pantheon, to the point where they became virtually indistinguishable. When the Romans studied Greek astronomy, they gave the planets their own gods' names.
To the Greeks and Romans, there were five known planets; each presumed to be [[Geocentric model|circling the Earth]] according to the complex laws laid out by [[Claudius Ptolemy]] in the 2nd century. They were, in increasing order from Earth (according to Ptolemy): [[Mercury (planet)|Mercury]] ([[Hermes]]), [[Venus]] ([[Aphrodite]]), [[Mars]] ([[Ares]]), [[Jupiter]] ([[Zeus]]), and [[Saturn]] ([[Kronos]]). Although strictly the term "planetai" referred only to those five objects, the term was often expanded to include the Sun and the Moon. Theoi Project, http://www.theoi.com/Titan/AstraPlaneta.html.  The Greeks still use their original names for the planets.
+
To the Greeks and Romans, there were five known planets; each presumed to be [[Geocentric model|circling the Earth]] according to the complex laws laid out by [[Claudius Ptolemy]] in the 2nd century. They were, in increasing order from Earth (according to Ptolemy): [[Mercury (planet)|Mercury]] ([[Hermes]]), [[Venus]] ([[Aphrodite]]), [[Mars]] ([[Ares]]), [[Jupiter]] ([[Zeus]]), and [[Saturn]] ([[Kronos]]). Although strictly the term "planetai" referred only to those five objects, the term was often expanded to include the Sun and the Moon. Theoi Project, https://www.theoi.com/Titan/AstraPlaneta.html.  The Greeks still use their original names for the planets.
  
Some [[Ancient Rome|Romans]], following a belief imported from [[Mesopotamia]] into [[Hellenistic Egypt]], 5: Planetary Linguisticw, http://www.nineplanets.org/days.html, believed that the seven gods after whom the planets were named took hourly shifts in looking after affairs on Earth. The order of shifts began with Jupiter and worked inwards; as a result, a list of which god had charge of the first hour in each day became Sun, Moon, Mars, Mercury, Jupiter, Venus, Saturn, i.e. the usual weekday name order. name="weekdays". Astronomical Names for the Days of the Week, Journal of the [[Royal Astronomical Society of Canada]]
+
Some [[Ancient Rome|Romans]], following a belief imported from [[Mesopotamia]] into [[Hellenistic Egypt]], 5: Planetary Linguisticw, https://www.nineplanets.org/days.html, believed that the seven gods after whom the planets were named took hourly shifts in looking after affairs on Earth. The order of shifts began with Jupiter and worked inwards; as a result, a list of which god had charge of the first hour in each day became Sun, Moon, Mars, Mercury, Jupiter, Venus, Saturn, i.e. the usual weekday name order. name="weekdays". Astronomical Names for the Days of the Week, Journal of the [[Royal Astronomical Society of Canada]]
http://adsabs.harvard.edu/cgi-bin/nph-bib_query? Sunday, Monday, and Saturday are straightforward translations of these Roman names. In English the other days were renamed after [[Tyr|Tiw]], (Tuesday) [[Woden|Wóden]] (Wednesday), [[Thor|Thunor]] (Thursday), and [[Frige|Fríge]] (Friday), [[Anglo-Saxon gods]] considered similar or equivalent to Mars, Mercury, Jupiter, and Venus respectively.
+
https://adsabs.harvard.edu/cgi-bin/nph-bib_query? Sunday, Monday, and Saturday are straightforward translations of these Roman names. In English the other days were renamed after [[Tyr|Tiw]], (Tuesday) [[Woden|Wóden]] (Wednesday), [[Thor|Thunor]] (Thursday), and [[Frige|Fríge]] (Friday), [[Anglo-Saxon gods]] considered similar or equivalent to Mars, Mercury, Jupiter, and Venus respectively.
  
 
Since Earth was only generally accepted as a planet in the 17th century, there is no tradition of naming it after a god. Many of the [[Romance languages]] (including French, Italian, Spanish and Portuguese), which are descended from Latin, retain the old Roman name of ''Terra'' or some variation thereof. However, the non-Romance languages  use their own respective native words. Again, the Greeks retain their original name, ''Γή'' (''Ge'' or ''Yi''); the [[Germanic languages]], including English, use a variation of an ancient Germanic word ''ertho'', "ground," as can be seen in the English ''Earth'', the German ''Erde,'' the Dutch ''Aarde'', and the Scandinavian ''Jorde.'' The same is true for the Sun and the Moon, though they are no longer considered planets.
 
Since Earth was only generally accepted as a planet in the 17th century, there is no tradition of naming it after a god. Many of the [[Romance languages]] (including French, Italian, Spanish and Portuguese), which are descended from Latin, retain the old Roman name of ''Terra'' or some variation thereof. However, the non-Romance languages  use their own respective native words. Again, the Greeks retain their original name, ''Γή'' (''Ge'' or ''Yi''); the [[Germanic languages]], including English, use a variation of an ancient Germanic word ''ertho'', "ground," as can be seen in the English ''Earth'', the German ''Erde,'' the Dutch ''Aarde'', and the Scandinavian ''Jorde.'' The same is true for the Sun and the Moon, though they are no longer considered planets.
Line 28: Line 32:
 
==History==
 
==History==
  
As scientific knowledge progressed, understanding of the term "planet" changed from something that moved across the sky (in relation to the [[fixed star|starfield]]), to a body that orbited the Earth (or that were believed to do so at the time). When the [[heliocentric model]] gained sway in the 16th century, it became accepted that a planet was actually something that directly orbited the [[Sun]]. Thus the Earth was itself a planet, http://galileo.rice.edu/sci/theories/copernican_system.html, Copernican The Galileo Project while the Sun and [[Moon]] were not.  Since they do not directly "orbit the Sun". At the end of the 17th century, when the first satellites of Saturn were discovered, the terms "planet" and "satellite" were at first used interchangeably, although "satellite" would gradually become more prevalent in the following century. "A Discovery of two'' New Planets ''about'' Saturn, ''made in the Royal Parisian Observatory by Signor'' Cassini, ''Fellow of both the Royal Societys, of'' England ''and'' France; ''English't out of French.''
+
As scientific knowledge progressed, understanding of the term "planet" changed from something that moved across the sky (in relation to the [[fixed star|starfield]]), to a body that orbited the Earth (or that were believed to do so at the time). When the [[heliocentric model]] gained sway in the 16th century, it became accepted that a planet was actually something that directly orbited the [[Sun]]. Thus the Earth was itself a planet, https://galileo.rice.edu/sci/theories/copernican_system.html, Copernican The Galileo Project while the Sun and [[Moon]] were not.  Since they do not directly "orbit the Sun". At the end of the 17th century, when the first satellites of Saturn were discovered, the terms "planet" and "satellite" were at first used interchangeably, although "satellite" would gradually become more prevalent in the following century. "A Discovery of two'' New Planets ''about'' Saturn, ''made in the Royal Parisian Observatory by Signor'' Cassini, ''Fellow of both the Royal Societys, of'' England ''and'' France; ''English't out of French.''
http://links.jstor.org/sici?sici=0370-2316%281673%298%3C5178%3AADOTNP%3E2.0.CO%3B2-Z . This journal became the Philosophical Transactions of the Royal Society of London in 1775. There may just be earlier publications within the '' Until the mid-19th century, any newly discovered object orbiting the Sun was listed with the planets by the scientific community, and the number of "planets" swelled rapidly towards the end of that period.
+
[https://links.jstor.org/sici?sici=0370-2316%281673%298%3C5178%3AADOTNP%3E2.0.CO%3B2-Z] . This journal became the Philosophical Transactions of the Royal Society of London in 1775. There may just be earlier publications within the '' Until the mid-19th century, any newly discovered object orbiting the Sun was listed with the planets by the scientific community, and the number of "planets" swelled rapidly towards the end of that period.
  
During the 1800s, astronomers began to realize most recent discoveries were unlike the traditional planets. They shared the same [[asteroid belt|region of space]], between [[Mars]] and [[Jupiter]], and had a far smaller mass. Bodies such as [[Ceres (dwarf planet)|Ceres]], [[2 Pallas|Pallas]], and [[4 Vesta|Vesta]], which had been classed as planets for almost half a century, became classified with the new designation "[[asteroid]]." From this point, a "planet" came to be understood, in the absence of any formal definition, as any "large" body that orbited the Sun. There was no apparent need to create a set limit, as  there was a dramatic size gap between the asteroids and the planets, and the spate of new discoveries seemed to have ended after the discovery of [[Neptune]] in 1846.<ref> http://aa.usno.navy.mil/hilton/AsteroidHistory/minorplanets.html. When Did the Asteroids Become Minor Planets? U.S. Naval Observatory  
+
During the 1800s, astronomers began to realize most recent discoveries were unlike the traditional planets. They shared the same [[asteroid belt|region of space]], between [[Mars]] and [[Jupiter]], and had a far smaller mass. Bodies such as [[Ceres (dwarf planet)|Ceres]], [[2 Pallas|Pallas]], and [[4 Vesta|Vesta]], which had been classed as planets for almost half a century, became classified with the new designation "[[asteroid]]." From this point, a "planet" came to be understood, in the absence of any formal definition, as any "large" body that orbited the Sun. There was no apparent need to create a set limit, as  there was a dramatic size gap between the asteroids and the planets, and the spate of new discoveries seemed to have ended after the discovery of [[Neptune]] in 1846.<ref> https://aa.usno.navy.mil/hilton/AsteroidHistory/minorplanets.html. When Did the Asteroids Become Minor Planets? U.S. Naval Observatory  
  
However, in the 20th century, [[Pluto]] was discovered. After initial observations led to the belief it was larger than Earth, the recently-created [[International Astronomical Union|IAU]] accepted the object as a planet. Further monitoring found the body was actually much smaller, but, as it was still larger than all known asteroids and seemingly did not exist within a larger population, it kept its status for some seventy years.<ref>{{cite web
+
However, in the 20th century, [[Pluto]] was discovered. After initial observations led to the belief it was larger than Earth, the recently-created [[International Astronomical Union|IAU]] accepted the object as a planet. Further monitoring found the body was actually much smaller, but, as it was still larger than all known asteroids and seemingly did not exist within a larger population, it kept its status for some seventy years. https://www.cfa.harvard.edu/icq/ICQPluto.html. Is Pluto a giant comet?
http://www.cfa.harvard.edu/icq/ICQPluto.html. Is Pluto a giant comet?
 
  
In the 1990s and early 2000s, there was a flood of discoveries of similar objects in the [[Kuiper belt|same region]] of the Solar System. Like Ceres and the asteroids before it, Pluto was found to be just one small body in a population of thousands. A growing number of astronomers argued for it to be declassified as a planet, since many similar objects approaching its size were found. The discovery of [[Eris (dwarf planet)|Eris]], a more massive object widely publicised as the [[tenth planet]], brought things to a head. The IAU set about creating the [[definition of planet]], and eventually produced one in 2006. The number of planets dropped to the eight significantly larger bodies that had [[clearing the neighbourhood|cleared their orbit]] ([[Mercury (planet)|Mercury]], [[Venus]], [[Earth]], [[Mars]], [[Jupiter]], [[Saturn]], [[Uranus]] & [[Neptune]]), and a new class of [[dwarf planet]]s was created, initially containing three objects (Ceres, Pluto and Eris).http://www.cfa.harvard.edu/iau/special/08747.pdf
+
In the 1990s and early 2000s, there was a flood of discoveries of similar objects in the [[Kuiper belt|same region]] of the Solar System. Like Ceres and the asteroids before it, Pluto was found to be just one small body in a population of thousands. A growing number of astronomers argued for it to be declassified as a planet, since many similar objects approaching its size were found. The discovery of [[Eris (dwarf planet)|Eris]], a more massive object widely publicised as the [[tenth planet]], brought things to a head. The IAU set about creating the [[definition of planet]], and eventually produced one in 2006. The number of planets dropped to the eight significantly larger bodies that had [[clearing the neighbourhood|cleared their orbit]] ([[Mercury (planet)|Mercury]], [[Venus]], [[Earth]], [[Mars]], [[Jupiter]], [[Saturn]], [[Uranus]] & [[Neptune]]), and a new class of [[dwarf planet]]s was created, initially containing three objects (Ceres, Pluto and Eris).https://www.cfa.harvard.edu/iau/special/08747.pdf
  
===Former planets===
+
==Former planets==
 
seealso|List of Solar System bodies formerly regarded as planets
 
seealso|List of Solar System bodies formerly regarded as planets
 
In [[Ancient history|ancient times]], astronomers accepted as "planets" the seven visible objects that moved across the starfield: the [[Sun]], the [[Moon]], [[Mercury (planet)|Mercury]], [[Venus]], [[Mars]], [[Jupiter]] and [[Saturn]]. Since then, many objects have qualified as planets for a time:
 
In [[Ancient history|ancient times]], astronomers accepted as "planets" the seven visible objects that moved across the starfield: the [[Sun]], the [[Moon]], [[Mercury (planet)|Mercury]], [[Venus]], [[Mars]], [[Jupiter]] and [[Saturn]]. Since then, many objects have qualified as planets for a time:
  
Asteroid until at least 2006, http://www.iau.org/Q_A2.415.0.html
+
Asteroid until at least 2006, https://www.iau.org/Q_A2.415.0.html
  
 
==Definition and disputes==
 
==Definition and disputes==
  
 
With the discovery during the latter half of the [[20th century|twentieth century]] of more objects within the [[Solar System]] and [[Extrasolar planets|large objects]] around other stars, disputes arose over what should constitute a planet. There was particular disagreement over whether an object should be considered a planet if it was part of a distinct population such as a [[belt]], or if it was large enough to generate energy by the [[thermonuclear fusion]] of [[deuterium]].  
 
With the discovery during the latter half of the [[20th century|twentieth century]] of more objects within the [[Solar System]] and [[Extrasolar planets|large objects]] around other stars, disputes arose over what should constitute a planet. There was particular disagreement over whether an object should be considered a planet if it was part of a distinct population such as a [[belt]], or if it was large enough to generate energy by the [[thermonuclear fusion]] of [[deuterium]].  
<!--- [[Image:EightTNOs.png|thumb|275px|The largest [[Trans-Neptunian objects]] that prompted the IAU's decision.]]
+
==Notes==
 
 
 
 
#Notes:
 
 
#Details on the new coding for clickable images is here:  
 
#Details on the new coding for clickable images is here:  
 
#While it may look strange, it's important to keep the codes for a particular system in order. The clickable coding treats the first object created in an area as the one on top.
 
#While it may look strange, it's important to keep the codes for a particular system in order. The clickable coding treats the first object created in an area as the one on top.
 
#Moons should be placed on "top" so that their smaller circles won't disappear "under" their respective primaries.
 
#Moons should be placed on "top" so that their smaller circles won't disappear "under" their respective primaries.
  
In 2003, The [[International Astronomical Union]] (IAU) Working Group on Extrasolar Planets made a position statement on the definition of a planet that incorporated a working definition: Working Group on Extrasolar Planets (WGESP) of the International Astronomical, http://www.dtm.ciw.edu/boss/definition.html
+
In 2003, The [[International Astronomical Union]] (IAU) Working Group on Extrasolar Planets made a position statement on the definition of a planet that incorporated a working definition: Working Group on Extrasolar Planets (WGESP) of the International Astronomical, https://www.dtm.ciw.edu/boss/definition.html
  
#Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 times the mass of Jupiter for objects with the same [[natural abundance|isotopic abundance]] as the Sun) Saumon, D.; Hubbard, W. B.; Burrows, A.; Guillot, T.; Lunine, J. I.; Chabrier, G. A Theory of Extrasolar Giant Planets, Astrophysical Journal, http://adsabs.harvard.edu/abs/1996ApJ that orbit stars or stellar remnants are "planets" (no matter how they formed). The minimum mass and size required for an extrasolar object to be considered a planet should be the same as that used in our Solar System.
+
#Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 times the mass of Jupiter for objects with the same [[natural abundance|isotopic abundance]] as the Sun) Saumon, D.; Hubbard, W. B.; Burrows, A.; Guillot, T.; Lunine, J. I.; Chabrier, G. A Theory of Extrasolar Giant Planets, Astrophysical Journal, https://adsabs.harvard.edu/abs/1996ApJ that orbit stars or stellar remnants are "planets" (no matter how they formed). The minimum mass and size required for an extrasolar object to be considered a planet should be the same as that used in our Solar System.
 
#Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are "[[brown dwarf]]s", no matter how they formed nor where they are located.
 
#Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are "[[brown dwarf]]s", no matter how they formed nor where they are located.
 
#Free-floating objects in young [[star cluster]]s with masses below the limiting mass for thermonuclear fusion of deuterium are not "planets", but are "sub-brown dwarfs" (or whatever name is most appropriate).
 
#Free-floating objects in young [[star cluster]]s with masses below the limiting mass for thermonuclear fusion of deuterium are not "planets", but are "sub-brown dwarfs" (or whatever name is most appropriate).
 
This definition has since been widely usedby astronomers when publishing discoveries in [[journal]]s, See for example the list of references for: Butler, R. P. ''et al'', http://exoplanets.org/, Catalog of Nearby Exoplanets, University of California and the Carnegie Institution, although it remains a temporary yet effective, working definition until a more permanent one is formally adopted. It also did not address the dispute over the lower mass limit and steered clear of the controversy regarding objects within the [[Solar System]].
 
 
This matter was finally addressed during the 2006 meeting of the IAU's General Assembly. After much debate and one failed proposal, the assembly voted to pass a resolution that [[2006 definition of planet|defined planets within the Solar System]] as: ehttp://www.iau.org/iau0603.414.0.html, IAU 2006 General Assembly: Result of the IAU resolution votes
 
 
 
{{quotation|'''A celestial body that is (a) in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a [[hydrostatic equilibrium]] (nearly round) shape, and (c) has [[clearing the neighbourhood|cleared the neighbourhood]] around its orbit.'''}}
 
 
Under this definition, the Solar System is considered to have eight planets. Bodies which fulfill the first two conditions but not the third (such as Pluto and Eris) are classified as [[dwarf planet]]s, providing they are not also [[natural satellite]]s of other planets. Originally an IAU committee had proposed a definition that would have included a much larger number of planets as it did not include (c) as a criterion. After much discussion, it was decided via a vote that those bodies should instead be classified as dwarf planets.
 
 
This definition is based in modern theories of planetary formation, in which planetary embryos initially clear their orbital neighborhood of other smaller objects. As described by astronomer [[Steven Soter]]:
 
 
{{quotation|''"The end product of secondary disk accretion is a small number of relatively large bodies (planets) in either non-intersecting or resonant orbits, which prevent collisions between them. Asteroids and comets, including KBOs, differ from planets in that they can collide with each other and with planets."'' What is a Planet, Astronomical Journal, http://arxiv.org/ftp/astro-ph/papers/0608/0608359.pdf
 
 
In the aftermath of the IAU's 2006 vote, there has been criticism of the new definition,<ref>{{cite web, http://www.space.com/scienceastronomy/060824_planet_definition.html] and some astronomers have ev[en stated that they will not use it.//www.space.com/scienceastronomy/060831_planet_definition.html. Part of the dispute centres around the belief that point (c) (clearing its orbit) should not have been listed, and that those objects now categorised as dwarf planets should actually be part of a broader planetary definition. The next IAU [[conference]] is not until 2009, when modifications could be made to the definition, also possibly including extrasolar planets.
 
 
Beyond the scientific community, Pluto has held a strong cultural significance for many in the general public considering its planetary status during most of the 20th century, in a similar way to Ceres and its kin in the 1800s. More recently, the discovery of Eris was widely reported in the [[mass media|media]] as the "[[tenth planet]]". The reclassification of all three objects as dwarf planets has attracted much media and public attention.
 
 
==Formation==
 
 
It is not known with certainty how planets are formed. The prevailing theory is that they are formed during the collapse of a [[nebula]] into a thin disk of gas and dust. A [[protostar]] forms at the core, surrounded by a rotating [[protoplanetary disk]]. Through [[accretion]]&mdash;a process of sticky collision&mdash;dust particles in the disk steadily accumulate mass to form ever-larger bodies. Local concentrations of mass known as [[planetesimal]]s form, and these accelerate the accretion process by drawing in additional material by their gravitational attraction. These concentrations become ever more dense until they collapse inward under gravity to form [[protoplanet]]
 
 
When the protostar has grown such that it ignites to form a [[star]], the surviving disk is removed from the inside outward by photoevaporation, the [[solar wind]], [[Poynting-Robertson effect|Poynting-Robertson drag]] and other effects. http://www.astro.umass.edu/theses/dianne/thesis.html . The Evolution of Dust in the Terrestrial Planet Region of Circumstellar Disks Around publisher =University of Massachusetts Amherst, I.; Johnstone, D.; Murray, N., Halting Planet Migration by Photoevaporation from the Central Source, The Astrophysical Journal, http://adsabs.harvard.edu/abs/2003astro.ph..2042M .  Thereafter there still may be many protoplanets orbiting the star or each other, but over time many will collide, either to form a single larger planet or release material for other larger protoplanets or planets to absorb. B.http://cfa-www.harvard.edu/~kenyon/pf/dd/Dusty Rings & Icy Planet Formation, Smithsonian Astrophysical Observatory. Planet Formation on the Fast Track, http://www.sciencenews.org/articles/20030125/bob9.asp. Those objects that have become massive enough will capture most matter in their orbital neighbourhoods to become planets. Meanwhile, protoplanets that have avoided collisions may become [[natural satellite]]s of planets through a process of gravitational capture, or remain in belts of other objects to become either [[dwarf planet]]s or [[small solar system bodies]].
 
 
The energetic impacts of the smaller planetesimals (as well as [[radioactive decay]]) will heat up the growing planet, causing it to at least partially melt. The interior of the planet begins to differentiate by mass, developing a denser core. Smaller terrestrial planets lose most of their atmospheres because of this accretion, but the lost gases can be replaced by outgassing from the mantle and from the subsequent impact of [[comet]]s. http://home.tiac.net/~cri/1998/planet.html, The Standard Model of Planet Formation, (Smaller planets will lose any atmosphere they gain through various [[Atmospheric escape|escape mechanisms]].)
 
 
With the discovery and observation of planetary systems around stars other than our own, it is becoming possible to elaborate, revise or even replace this account. The level of [[metallicity];a astronomical term describing the abundance of [[isotope]]s with an [[atomic number]] greater than 2 (Helium)&mdash;is now believed to determine the likelihood that a star will have planets. [http://cfa-www.harvard.edu/press/pr0404.html], Lifeless Suns Dominated The Early Universe, Harvard-Smithsonian Center for Astrophysic.  Hence it is thought less likely that a metal-poor, [[population II star]] will possess a more substantial planetary system than a metal-rich [[population I star]].
 
 
==Within the Solar System==
 
 
According to the [[IAU]]'s current definitions. According to the IAU" alone sounds really awkward there are eight planets in the Solar System. In increasing distance from the [[Sun]], they are:
 
                                                                                             
 
The larger bodies of the Solar System can be divided into categories based on their composition:
 
* '''[[Terrestrial planet|Terrestrial]]s''': Planets (and possibly dwarf planets) that are similar to Earth &mdash; with bodies largely composed of [[Rock (geology)|rock]]: Mercury, Venus, Earth and Mars. If including dwarf planets, [[Ceres (dwarf planet)|Ceres]] would also be counted, with as many as three other [[asteroids]] that might be added.
 
* '''[[Gas giant]]s''': Planets with a composition largely made up of [[gas]]eous material and are significantly more massive than terrestrials: Jupiter, Saturn, Uranus, Neptune. [[Ice giant]]s are a sub-class of gas giants, distinguished from gas giants by their depletion in hydrogen and helium, and a significant composition of rock and ice: Uranus and Neptune.
 
* '''[[Ice dwarf]]s''': Objects that are composed mainly of ice, and do not have planetary mass. The dwarf planets [[Pluto]] and [[Eris (dwarf planet)|Eris]] are ice dwarfs, and several dwarf planetary candidates also qualify.
 
 
===Dwarf planets===
 
 
Before the [[2006 redefinition of planet|August 2006 decision]], several objects were proposed by astronomers, including at one stage by the [[International Astronomical Union|IAU]], as planets. However in 2006 several of these objects were reclassified as [[dwarf planet]]s, objects distinct from planets. Currently three dwarf planets in the [[Solar System]] are recognized by the IAU: [[Ceres (dwarf planet)|Ceres]], [[Pluto]] and [[Eris (dwarf planet)|Eris]]. Several other objects in both the [[asteroid belt]] and the [[Kuiper belt]] are under consideration, with as many as 50 that could eventually qualify. There may be as many as 200 that could be discovered once the Kuiper Belt has been fully explored. Dwarf planets share many of the same [[characteristics]] as planets, although notable differences remain&mdash;namely that they are not [[clearing the neighbourhood|dominant in their orbits]]. Their attributes are:
 
 
By definition, all dwarf planets are members of larger [[populations]]. Ceres is the largest body in the [[asteroid belt]], while Pluto is a member of the [[Kuiper belt]] and Eris is a member of the [[scattered disc]]. According to [[Michael E. Brown|Mike Brown]] there may soon be over forty [[trans-Neptunian objects]] that qualify as dwarf planets under the IAU's recent definition. Behind the Pluto Mission: An Interview with Project Leader http://www.space.com/scienceastronomy/060228_stern_interview.html
 
 
==Beyond the Solar System==
 
===Extrasolar planets===
 
 
Since the 1988 discovery of [[Gamma Cephei|Gamma Cephei Ab]], a number of confirmed discoveries have been made of planets orbiting stars other than the Sun. Of the 239 [[extrasolar planet]]s discovered by August 2007, most have masses which are comparable to or larger than Jupiter's.<ref name="Encyclopedia" Interactive Extra-solar Planets Catalog, The Extrasolar Planets Encyclopedia, http://exoplanet.eu/catalog.php |last=Schneider |first=Jean |date=[[December 11]], [[2006]] |accessdate=2006-12-11}} Exceptions include a number of planets discovered orbiting burned-out star remnants called [[pulsar]]s, such as [[PSR B1257 plus 12|PSR B1257+12]],<ref>{{cite news | title=Scientists reveal smallest extra-solar planet yet found [[February 11]], [[2005]] http://www.spaceflightnow.com/news/n0502/11planet/ the planets orbiting the stars [[Mu Arae]], [[55 Cancri]] and [[GJ 436]] which are approximately Neptune-sized, N.; Bouchy, F.; Vauclair, S.; Queloz, D.; Mayor, M. Fourteen Times the Earth, http://www.eso.org/public/outreach/press-rel/pr-2004/pr-22-04.html, and a planet orbiting [[Gliese 876]] that is estimated to be about 6 to 8 times as massive as the Earth and is probably rocky in composition.
 
 
It is far from clear if the newly discovered large planets would resemble the gas giants in the Solar System or if they are of an entirely different type as yet unknown, like ammonia giants or carbon planets. In particular, some of the newly discovered planets, known as [[hot Jupiter]]s, orbit extremely close to their parent stars, in nearly circular orbits. They therefore receive much more [[solar radiation|stellar radiation]] than the gas giants in the Solar System, which makes it questionable whether they are the same type of planet at all. There is also a class of hot Jupiters that orbit so close to their star that their atmospheres are slowly blown away in a comet-like tail: the [[Chthonian planet]]s.
 
 
More detailed observation of extrasolar planets will require a new generation of instruments, including [[space telescope]]s. Currently the [[CoRoT]] spacecraft is searching for stellar luminosity variations due to [[Astronomical transit|transiting planets]]. Several projects have also been proposed to create an array of [[space telescope]]s to search for extrasolar planets with masses comparable to the Earth. These include the proposed NASA's [[Kepler Mission]], [[Terrestrial Planet Finder]], and [[Space Interferometry Mission]] programs, the [[European Space Agency|ESA]]'s [[Darwin (ESA)|Darwin]], and the CNES', http://www.spacetoday.org/DeepSpace/Stars/Planets/PlanetFindingMissions.html, Future American and European Planet Finding Missions
 
The [[New Worlds Imager]] is an occulting device that may work in conjunction with the [[James Webb Space Telescope]]. However, funding for some of these projects remains uncertain. The frequency of occurrence of such terrestrial planets is one of the variables in the [[Drake equation]] which estimates the number of [[extraterrestrial intelligence|intelligent, communicating civilizations]] that exist in our galaxy. The Drake Equation Revisited, Astrobiology Magazine, http://www.astrobio.net/news/article610.html
 
 
===Interstellar "planets"===
 
{{Main|Interstellar planetary mass object}}
 
Several [[computer simulation]]s of stellar and planetary system formation have suggested that some [[planemo|objects of planetary mass]] would be ejected into interstellar [[space]]. Some scientists have argued that such objects found roaming in deep space should be classed as "planets". However, many others argue that only planemos that directly orbit [[star]]s should qualify as planets, preferring to use the terms "planetary body", "planetary mass object" or "planemo" for similar free-floating objects (as well as planetary-sized moons). The [[International Astronomical Union|IAU's]] working definition on extrasolar planets takes no position on the issue. The discoverers of the bodies mentioned above decided to avoid the debate over what constitutes a planet by referring to the objects as planemos. However, the original IAU proposal for the 2006 definition of planet favoured the star-orbiting criterion, although the final draft avoided the issue.
 
 
For a brief time in 2006, astronomers believed they had found a binary system of such objects, [[Oph 162225-240515]], which the discoverers described as "planemos". However, recent analysis, The Wide Brown Dwarf Binary Oph 1622-2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623-2402): A New Class of Young Evaporating Wide Binaries http://fr.arxiv.org/PS_cache/astro-ph/pdf/0608/0608574.pdf.,  ''et al'' of the objects has determined that their masses are each greater than 13 Jupiter-masses, making the pair [[brown dwarf]]s. http://www.space.com/scienceastronomy/planet_photo_040910.html, Likely First Photo of Planet Beyond the Solar System
 
 
Although each planet has unique physical characteristics, a number of broad commonalities do exist between them. Some of these characteristics, such as rings or natural satellites, have only as yet been observed in planets in the Solar System. Others are common to extrasolar planets as well.
 
 
===Dynamic characteristics===
 
====Orbit====
 
[[Image:Eris Orbit.svg|thumb|250 px|left|The orbits of the planets compared to the trans-Neptunian objects [[Eris (dwarf planet)|Eris]] and [[Pluto]]. Note the extreme elongation of both objects' orbits in relation to those of the planets ([[orbital eccentricity|eccentricity]]), as well as their large angles to the ecliptic ([[inclination]])]]
 
All the planets revolve around their star. In the Solar System, all the planets orbit in sync with the Sun's rotation. It is not yet known whether all extrasolar planets follow this pattern. The period of one revolution of a planet's orbit is known as its [[sidereal period]] or [[year]]. A planet's year depends on its distance from the Sun; the farther a planet is from its star, not only the longer the distance it must travel, but also the slower its speed, as it is less affected by the star's gravity. Because no planet's orbit is perfectly circular, the distance of each varies over the course of its year. Its closest distance to its is called its [[periastron]] ([[perihelion]] in the Solar System), while its farthest distance from the star is called its [[apastron]] ([[aphelion]] in the Solar System). As a planet approaches periastron, its speed increases as the pull of its star's gravity strengthens; as it reaches apastron, its speed decreases.
 
 
Each planet's orbit is delineated by a set of [[orbital elements|elements]]:
 
 
*The points at which a planet crosses above and below the ecliptic are called its [[ascending node|ascending]] and [[descending node]]s.
 
*The ''[[Orbital eccentricity|eccentricity]]'' of an orbit describes how elongated a planet's orbit is. Planets with low eccentricities have more circular orbits, while planets with a high eccentricities have more elliptical orbits. The planets in our Solar System have very low eccentricities, and thus nearly circular orbits. Comets and Kuiper belt objects (as well as several extrasolar planets) have very high eccentricities, and thus exceedingly elliptical orbits.
 
*The ''[[semi-major axis]]'' is the distance from a planet to the half-way point along the longest diameter of its elliptical orbit (see image). This distance is not necessarily the same as its apasteron, as no planet's orbit has its star at its exact centre.
 
 
*In our Solar System, the ''[[inclination]]'' of a planet tells how far above or below the plane of Earth's orbit (called the [[ecliptic]]) a planet's orbit lies. The eight planets of our Solar System all lie very close to the ecliptic; comets and [[Kuiper belt object]]s like [[Pluto]] are at far more extreme angles to it.
 
 
====Axial tilt====
 
Planets also have varying degrees of [[axial tilt]]; they lie at an angle to the [[reference plane|plane]] of the [[inclination|Sun's equator]]. This causes the amount of sunlight received by each hemisphere to vary over the course of its year; when the northern hemisphere points away from the Sun, the southern hemisphere points towards it, and vice versa. Each planet therefore possesses [[season]]s; changes to the climate over the course of its year. The point at which each hemisphere is farthest/nearest from the Sun is known as its [[solstice]]. Each planet has two in the course of its orbit; when one hemisphere has its summer solstice, when its day is longest, the other has its winter solstice, when its day is shortest. Jupiter's axial tilt is very small, so its seasonal variation is minimal; Uranus, on the other hand, has an axial tilt so extreme it is virtually on its side, which means that its hemispheres are either perpetually in sunlight or perpetually in darkness around the time of its solstices.
 
 
====Rotation====
 
The planets also rotate around invisible axes through their centres. A planet's [[rotation period]] is known as its [[day]]. All the planets rotate in a counter-clockwise direction, except for Venus, which [[Retrograde and direct motion|rotates clockwise]] (Uranus, because of its extreme axial tilt, can be said to be rotating either clockwise or anti-clockwise, depending on whether one states it to be inclined 82° from the ecliptic in one direction, or 98° in the opposite direction). There is great variation in the length of day between the planets, with Venus taking 243 Earth days to rotate, and the gas giants only a few hours. Their close proximity to their stars means that most extrasolar planets discovered to date are [[tidal lock|tidelocked]]; their orbits are in sync with their rotations. They only ever show one face to their stars.
 
 
===Physical characteristics===
 
====Hydrostatic equilibrium====
 
One of a planet's defining characteristics is that it is large enough for the force of its own gravity to dominate over the [[electromagnetic]] forces binding its physical structure, leading to a state of [[hydrostatic equilibrium]]. This effectively means that all planets are spherical or spheroidal. Up to a certain size, an object can be irregular in shape,  but beyond that point, which varies depending on the chemical makeup of the object, gravity begins to pull an object towards its own centre of mass until the object collapses into a sphere.
 
====Internal diffrentiation====
 
Every planet began its existence in an entirely fluid state; in early formation, the denser, heavier materials sank to the centre, leaving the lighter materials near the surface. Each therefore has a [[Planetary differentiation|differentiated]] interior consisting of a dense [[planetary core]] surrounded by a [[Mantle (geology)|mantle]] which either is or was a [[fluid]]. The terrestrial planets are sealed within hard [[Crust (geology)|crusts]], but in the gas giants the mantle simply dissolves into the upper cloud layers. The terrestrial planets possess cores of magnetic elements such as [[iron]] and [[nickel]], and mantles of [[silicates]]. [[Jupiter]] and [[Saturn]] are believed to possess cores of rock and metal surrounded by mantles of [[metallic hydrogen]]. [[Uranus]] and [[Neptune]], which are smaller, possess rocky cores surrounded by mantles of [[water]], [[ammonia]], [[methane]] and other ices.
 
====Atmospheres====
 
All of the planets have [[atmosphere]]s as their large masses mean gravity is strong enough to keep gaseous particles close to the surface. The larger gas giants are massive enough to keep large amounts of the light gases [[Hydrogen]] and [[Helium]] close by, although these gases mostly float into [[space]] around the smaller planets. Earth's atmosphere is greatly different to the other planets because of the various life processes that have transpired there, while the atmosphere of Mercury has mostly, although not entirely, been blasted away by the [[solar wind]]. Planetary atmospheres are affected by the varying degrees of energy received from either the Sun or their interiors, leading to the formation of dynamic [[weather system]]s such as [[hurricane]]s, (on Earth), planet-wide [[dust storm]]s (on Mars) and [[Great Red Spot|Earth-sized anticyclone]]s (on Jupiter). At least one extrasolar planet, [[HD 189733b]], has been shown to possess such a weather system, similar to the Great Red Spot on Jupiter but twice as large. http://www.cfa.harvard.edu/press/2007/pr200713.html, First Map of an Extrasolar Planet|work=Harvard-Smithsonian Center for Astrophysics.  Hot Jupiters have been shown to be losing their atmospheres into space due to stellar radiation, much like the tails of comets. http://hubblesite.org/newscenter/archive/releases/2007/07/full/|title=Hubble Probes Layer-cake Structure of Alien World's Atmosphere. These planets have vast differences in temperature between their day and night sides which produce supersonic windspeeds.http://www.nasa.gov/vision/universe/starsgalaxies/spitzer-20061012.html|title=NASA's Spitzer Sees Day and Night on Exotic World
 
 
===Secondary characteristics===
 
Many of the planets have [[natural satellite]]s, often called "moons."  Mercury and Venus have no moons, the Earth has one, and Mars has two, but the [[gas giant]]s all have numerous moons in complex planetary systems. Many gas giant moons have similar features to the terrestrial planets and dwarf planets, and some have been studied for signs of life.
 
 
The four largest planets in the Solar System are also orbited by [[planetary rings]] of varying size and complexity. The rings are composed primarily of dust or particulate matter, but can host tiny '[[moonlet]]s' whose gravity shapes and maintains their structure. Although the origins of planetary rings is not precisely known, they are believed to be the result of natural satellites which fell below their parent planet's [[Roche limit]] and were torn apart by [[tidal forces]].
 
 
==External links==
 
* [http://www.iau.org International Astronomical Union]
 
* [http://www.fourmilab.ch/cgi-bin/uncgi/Solar/ Solar System Live] (an interactive [[orrery]])
 
* [http://janus.astro.umd.edu/javadir/orbits/ssv.html Solar System Viewer] (animation)
 
* [http://www.sky-pics.net/ Pictures of the Solar System]
 
* [http://planetquest.jpl.nasa.gov/ NASA Planet Quest]
 
*[http://www.co-intelligence.org/newsletter/comparisons.html Illustration comparing the sizes of the planets with each other, the sun, and other stars]
 
 
===Definition and reclassification debate===
 
* [http://www.ciw.edu/IAU/div3/wgesp/definition.html Working definition of "planet"] from [[International Astronomical Union|IAU]] WGESP &mdash; the lower bound remained a matter of consensus in February 2003
 
* Steven Soter's article "''What is a Planet''" in [[Scientific American]], January 2007, pp 34-41.
 
* Dan Green's page on [http://cfa-www.harvard.edu/cfa/ps/icq/ICQPluto.html planet classification]
 
* Stern & Levinson's article [http://www.boulder.swri.edu/~hal/planet_def.html "Regarding the criteria for planethood and proposed planetary classification schemes."]
 
* [http://www.spacedaily.com/news/outerplanets-04b.html Gravity Rules: The Nature and Meaning of Planethood]; S. Alan Stern; [[March 22]], [[2004]]
 
* [http://www.iau.org/STATUS_OF_PLUTO.238.0.html IAU Press Release 01/99 "The status of Pluto: A Clarification"]; [[International Astronomical Union|IAU]], 1999-02-03
 
* [http://news.bbc.co.uk/1/hi/sci/tech/4795755.stm BBC: "Planets plan boost tally 12" 2006-08-16]
 
* [http://news.bbc.co.uk/1/hi/world/5282440.stm BBC: "Pluto loses status as a planet" 2006-08-24]
 
* [http://news.bbc.co.uk/2/hi/science/nature/5283956.stm BBC: "Pluto vote 'hijacked' in revolt" 2006-08-25]
 
  
  
 
[[Category: General Reference]]
 
[[Category: General Reference]]

Latest revision as of 02:32, 13 December 2020

Lighterstill.jpg

Planetary Eclipse.jpg

A planet, as 2006 definition of planet|most recently defined by the International Astronomical Union (IAU), is a celestial body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, not massive enough to cause thermonuclear fusion in its core, and has cleared its neighbouring region of planetesimals.

  • IAU 2006 General Assembly: Result of the IAU Resolution votes [1] .
  • Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union, [2]

The term planet is an ancient one, with ties to history, science, myth and religion. The planets were originally seen as a divine presence; as emissaries of the gods. As scientific knowledge improved, the human perception of the planets changed over time, incorporating a number of disperate objects. Even now there is no unconstested definition of what a planet is. In 2006, the IAU officially adopted a resolution defining planets within the Solar System. This definition has been both praised and criticised, and remains disputed by some scientists.

Since the dawn of the space age, probes have been sent to every planet in the Solar System, and the discoveries they have made have shifted planetary science from the realm of astronomy to the realms of geography and geology. The planets have been found to share many characteristics, such as volcanism, hurricanes, tectonics and even hydrology, previously only known on Earth. Since 1992, and the discovery of hundreds of extrasolar planets, scientists are beginning to observe similar features across the galaxy.

Under IAU definitions, there are eight planets in the Solar System (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune) and also at least three dwarf planets (Ceres, Pluto, and Eris). Many of these planets are orbited by one or more moons, which can be larger than small planets. There have also been more than two hundred planets discovered orbiting other stars."Encyclopaedia"> Interactive Extra-solar Planets Catalog, The Extrasolar Planets Encyclopaedia, https://exoplanet.eu/catalog.php Planets are generally d. ivided into two main types: large, low-density gas giants and smaller, rocky terrestrials. Dwarf planets, a separate category, can either be terrestrials or frozen ice dwarfs.

Etymology

In ancient times, astronomers noted how certain lights moved across the sky in relation to the other stars. These objects were believed to orbit the Earth, which was considered to be stationary. The lights were first called "πλανήται" (planētai), See romanization of Greek for the transcription scheme meaning "wanderers", by the ancient Greeks, and it is from this that the word "planet" was derived. Definition of planet Merriam-Webster OnLine, Words For Our Modern Age: Especially words derived from Latin and Greek.

The Greeks gave the planets names: the farthest was called Phainon, the shiner, while below it was Phaethon, the bright one. The red planet was known as Pyroeis, "fiery", while the brightest was known as Phosphoros, the light bringer, and the fleeting final planet was called Stilbon, the gleamer. However, the Greeks also made each planet sacred to one of their pantheon of gods, the Olympians: Phainon was sacred to Kronos, the Titan who fathered the Olympians, while Phaethon was sacred to Zeus, his son who deposed him as king. Ares, son of Zeus and god of war, was given dominion over Pyroeis, while Aphrodite, goddess of love, ruled over bright Phosphoros, and Hermes ruled over Stilbon. The History and Practice of Ancient, James Evans, Oxford University Press

The Greek practice of grafting of their gods' names onto the planets was almost certainly borrowed from the Babylonians, a contemporary civilisation in what is now Iraq, from whom they had begun to absorb astronomical learning, including constellations and the zodiac, by 600 BCE. A Chronological History of Babylonian Astronomy, Gary D. Thompson, https://members.optusnet.com.au/~gtosiris/page9k.html] The Babylonians had in turn inherited the practice from their predecessors, the Sumerians, who flourished around 2500 years before. The Babylonians named Phosphoros after their goddess of love, Ishtar, Pyroeis after their god of war, Nergal, and Phaethon after their chief god, Marduk, nergal> The Days of https://www.friesian.com/week.htm The Friesian School, There are too many concordances between Greek and Babylonian naming conventions for them to have arisen separately. There does, however, appear to have been some confusion in translation. For instance, the Babylonian Nergal was a god of war, and the Greeks, seeing this aspect of Nergal's persona, identified him with Ares, their god of war. However, Nergal, unlike Ares, was also a god of the dead and a god of pestilence.<ref name= nergal.

Today, most people in the western world know the planets by names derived from the Olympian pantheon of gods; however, because of the influence of the Roman Empire and, later, the Catholic Church, they are known by their Roman (or Latin) names, rather than the Greek. The Romans, who, like the Greeks, were Indo-Europeans, shared with them a common pantheon under different names but lacked the rich narrative traditions that Greek poetic culture had given their gods. During the later period of the Roman Republic, Roman writers borrowed much of the Greek narratives and applied them to their own pantheon, to the point where they became virtually indistinguishable. When the Romans studied Greek astronomy, they gave the planets their own gods' names. To the Greeks and Romans, there were five known planets; each presumed to be circling the Earth according to the complex laws laid out by Claudius Ptolemy in the 2nd century. They were, in increasing order from Earth (according to Ptolemy): Mercury (Hermes), Venus (Aphrodite), Mars (Ares), Jupiter (Zeus), and Saturn (Kronos). Although strictly the term "planetai" referred only to those five objects, the term was often expanded to include the Sun and the Moon. Theoi Project, https://www.theoi.com/Titan/AstraPlaneta.html. The Greeks still use their original names for the planets.

Some Romans, following a belief imported from Mesopotamia into Hellenistic Egypt, 5: Planetary Linguisticw, https://www.nineplanets.org/days.html, believed that the seven gods after whom the planets were named took hourly shifts in looking after affairs on Earth. The order of shifts began with Jupiter and worked inwards; as a result, a list of which god had charge of the first hour in each day became Sun, Moon, Mars, Mercury, Jupiter, Venus, Saturn, i.e. the usual weekday name order. name="weekdays". Astronomical Names for the Days of the Week, Journal of the Royal Astronomical Society of Canada https://adsabs.harvard.edu/cgi-bin/nph-bib_query? Sunday, Monday, and Saturday are straightforward translations of these Roman names. In English the other days were renamed after Tiw, (Tuesday) Wóden (Wednesday), Thunor (Thursday), and Fríge (Friday), Anglo-Saxon gods considered similar or equivalent to Mars, Mercury, Jupiter, and Venus respectively.

Since Earth was only generally accepted as a planet in the 17th century, there is no tradition of naming it after a god. Many of the Romance languages (including French, Italian, Spanish and Portuguese), which are descended from Latin, retain the old Roman name of Terra or some variation thereof. However, the non-Romance languages use their own respective native words. Again, the Greeks retain their original name, Γή (Ge or Yi); the Germanic languages, including English, use a variation of an ancient Germanic word ertho, "ground," as can be seen in the English Earth, the German Erde, the Dutch Aarde, and the Scandinavian Jorde. The same is true for the Sun and the Moon, though they are no longer considered planets.

Some non-European cultures use their own planetary naming systems. India uses a naming system based on the Navagraha, which incorporates the seven traditional planets (Sun, Moon, Mercury, Venus, Mars, Jupiter, and Saturn) and the ascending and descending lunar nodes Rahu and Ketu. China, and the countries of eastern Asia subject to Chinese cultural influence, such as Japan, Korea and Vietnam, use a naming system based on the five Chinese elements.

History

As scientific knowledge progressed, understanding of the term "planet" changed from something that moved across the sky (in relation to the starfield), to a body that orbited the Earth (or that were believed to do so at the time). When the heliocentric model gained sway in the 16th century, it became accepted that a planet was actually something that directly orbited the Sun. Thus the Earth was itself a planet, https://galileo.rice.edu/sci/theories/copernican_system.html, Copernican The Galileo Project while the Sun and Moon were not. Since they do not directly "orbit the Sun". At the end of the 17th century, when the first satellites of Saturn were discovered, the terms "planet" and "satellite" were at first used interchangeably, although "satellite" would gradually become more prevalent in the following century. "A Discovery of two New Planets about Saturn, made in the Royal Parisian Observatory by Signor Cassini, Fellow of both the Royal Societys, of England and France; English't out of French. [3] . This journal became the Philosophical Transactions of the Royal Society of London in 1775. There may just be earlier publications within the Until the mid-19th century, any newly discovered object orbiting the Sun was listed with the planets by the scientific community, and the number of "planets" swelled rapidly towards the end of that period.

During the 1800s, astronomers began to realize most recent discoveries were unlike the traditional planets. They shared the same region of space, between Mars and Jupiter, and had a far smaller mass. Bodies such as Ceres, Pallas, and Vesta, which had been classed as planets for almost half a century, became classified with the new designation "asteroid." From this point, a "planet" came to be understood, in the absence of any formal definition, as any "large" body that orbited the Sun. There was no apparent need to create a set limit, as there was a dramatic size gap between the asteroids and the planets, and the spate of new discoveries seemed to have ended after the discovery of Neptune in 1846.<ref> https://aa.usno.navy.mil/hilton/AsteroidHistory/minorplanets.html. When Did the Asteroids Become Minor Planets? U.S. Naval Observatory

However, in the 20th century, Pluto was discovered. After initial observations led to the belief it was larger than Earth, the recently-created IAU accepted the object as a planet. Further monitoring found the body was actually much smaller, but, as it was still larger than all known asteroids and seemingly did not exist within a larger population, it kept its status for some seventy years. https://www.cfa.harvard.edu/icq/ICQPluto.html. Is Pluto a giant comet?

In the 1990s and early 2000s, there was a flood of discoveries of similar objects in the same region of the Solar System. Like Ceres and the asteroids before it, Pluto was found to be just one small body in a population of thousands. A growing number of astronomers argued for it to be declassified as a planet, since many similar objects approaching its size were found. The discovery of Eris, a more massive object widely publicised as the tenth planet, brought things to a head. The IAU set about creating the definition of planet, and eventually produced one in 2006. The number of planets dropped to the eight significantly larger bodies that had cleared their orbit (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus & Neptune), and a new class of dwarf planets was created, initially containing three objects (Ceres, Pluto and Eris).https://www.cfa.harvard.edu/iau/special/08747.pdf

Former planets

seealso|List of Solar System bodies formerly regarded as planets In ancient times, astronomers accepted as "planets" the seven visible objects that moved across the starfield: the Sun, the Moon, Mercury, Venus, Mars, Jupiter and Saturn. Since then, many objects have qualified as planets for a time:

Asteroid until at least 2006, https://www.iau.org/Q_A2.415.0.html

Definition and disputes

With the discovery during the latter half of the twentieth century of more objects within the Solar System and large objects around other stars, disputes arose over what should constitute a planet. There was particular disagreement over whether an object should be considered a planet if it was part of a distinct population such as a belt, or if it was large enough to generate energy by the thermonuclear fusion of deuterium.

Notes

  1. Details on the new coding for clickable images is here:
  2. While it may look strange, it's important to keep the codes for a particular system in order. The clickable coding treats the first object created in an area as the one on top.
  3. Moons should be placed on "top" so that their smaller circles won't disappear "under" their respective primaries.

In 2003, The International Astronomical Union (IAU) Working Group on Extrasolar Planets made a position statement on the definition of a planet that incorporated a working definition: Working Group on Extrasolar Planets (WGESP) of the International Astronomical, https://www.dtm.ciw.edu/boss/definition.html

  1. Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 times the mass of Jupiter for objects with the same isotopic abundance as the Sun) Saumon, D.; Hubbard, W. B.; Burrows, A.; Guillot, T.; Lunine, J. I.; Chabrier, G. A Theory of Extrasolar Giant Planets, Astrophysical Journal, https://adsabs.harvard.edu/abs/1996ApJ that orbit stars or stellar remnants are "planets" (no matter how they formed). The minimum mass and size required for an extrasolar object to be considered a planet should be the same as that used in our Solar System.
  2. Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are "brown dwarfs", no matter how they formed nor where they are located.
  3. Free-floating objects in young star clusters with masses below the limiting mass for thermonuclear fusion of deuterium are not "planets", but are "sub-brown dwarfs" (or whatever name is most appropriate).