From Nordan Symposia
Jump to navigationJump to search


Vortex austin.jpg

A vortex (pl. vortices) is a spinning, often turbulent, flow of fluid. Any spiral motion with closed streamlines is vortex flow. The motion of the fluid swirling rapidly around a center is called a vortex. The speed and rate of rotation of the fluid are greatest at the center, and decrease progressively with distance from the center.

For lessons on the related topic of Portals, follow this link.


Vortices display some special properties:

  • The fluid pressure in a vortex is lowest in the center where the speed is greatest, and rises progressively with distance from the center. This is in accordance with Bernoulli's Principle. The core of a vortex in air is sometimes visible because of a plume of water vapour caused by condensation in the low pressure of the core. The spout of a tornado is a classic and frightening example of the visible core of a vortex. A dust devil is also the core of a vortex, made visible by the dust drawn upwards by the turbulent flow of air from ground level into the low pressure core.
  • The core of every vortex can be considered to contain a vortex line, and every particle in the vortex can be considered to be circulating around the vortex line. Vortex lines start and end at the boundary of the fluid, but they do not start or end in the fluid. (See Helmholtz's theorems.) Vortices readily deflect and attach themselves to a solid surface. For example, a vortex usually forms ahead of the propeller disk or jet engine of a slow-moving airplane. One end of the vortex line is attached to the propeller disk or jet engine, but when the airplane is taxiing the other end of the vortex line readily attaches itself to the ground rather than end in midair. The vortex can suck water and small stones into the core and then into the propeller disk or jet engine.
  • Two or more vortices that are approximately parallel and circulating in the same direction will quickly merge to form a single vortex. The circulation of the merged vortex will equal the sum of the circulations of the constituent vortices. For example, a sheet of small vortices flows from the trailing edge of the wing or propeller of an airplane when the wing is developing lift or the propeller is developing thrust. In less than one wing chord downstream of the trailing edge of the wing these small vortices merge to form a single vortex. If viewed from the tail of the airplane, looking forward in the direction of flight, there is one wingtip vortex trailing from the left-hand wing and circulating clockwise, and another wingtip vortex trailing from the right-hand wing and circulating anti-clockwise. The result is a region of downwash behind the wing, between the pair of wingtip vortices. These two wingtip vortices do not merge because they are circulating in opposite directions.
  • Vortices contain a lot of energy in the circular motion of the fluid. In an ideal fluid this energy can never be dissipated and the vortex would persist forever. However, real fluids exhibit viscosity and this dissipates energy very slowly from the core of the vortex. (See Rankine vortex). It is only through dissipation of a vortex due to viscosity that a vortex line can end in the fluid, rather than at the boundary of the fluid. For example, the wingtip vortices from an airplane dissipate slowly and linger in the atmosphere long after the airplane has passed. This is a hazard to other aircraft and is known as wake turbulence.[1]